1

PHYS 2BM: GENERAL PHYSICS: CALCULUS SUPPLEMENT

Foothill College Course Outline of Record

Heading	Value
Effective Term:	Summer 2022
Units:	1
Hours:	1 lecture per week (12 total per quarter)
Prerequisite:	MATH 1B or 1BH.
Corequisite:	Completion of or concurrent enrollment in PHYS 2B.
Degree & Credit Status:	Degree-Applicable Credit Course
Foothill GE:	Non-GE
Transferable:	CSU/UC
Grade Type:	Letter Grade Only
Repeatability:	Not Repeatable

Student Learning Outcomes

- The student will be able to apply the methods of calculus to calculate electric fields and potentials from charge distributions.
- The student will be able to apply the methods of calculus to solve for the electric/magnetic fields generated from changing electric/ magnetic fields.
- The student will be able to apply the methods of calculus to calculate electric and magnetic fields for the appropriate symmetric distributions.
- The student will be able to apply the methods of calculus to solve problems in circuits with time-varying behavior.

Description

Application of calculus to physics topics and problems in electricity and magnetism.

Course Objectives

The student will be able to:

- 1. Apply calculus to fields
- 2. Solve problems involving electric fields or voltages, using calculus
- 3. Apply calculus to circuits
- 4. Apply calculus to magnetic field problems
- 5. Interpret EM waves as solutions to Maxwell's equations

Course Content

- 1. Apply calculus to fields
 - a. Review of calculus
 - i. Derivatives
 - ii. Integrals
 - b. Concept of fields
 - i. Vector fields
 - ii. Graphical interpretation

- 2. Solve problems involving electric fields or voltages, using calculus
 - a. Electric fields from charge distributions
 - b. Gauss's Law
 - i. Concept of flux
 - ii. Symmetries where Gauss's Law can be used
 - iii. Solving for electric fields
 - c. Voltages
 - i. Calculation of voltages from electric fields (and reverse operation)
 - ii. Calculation of voltages from charge distributions
- 3. Apply calculus to circuits
- a. RC circuits
 - i. First order differential equations
 - ii. Time behavior of RC circuits
 - b. LRC circuits
- 4. Apply calculus to magnetic field problems
 - a. Magnetism from Biot and Savart
 - b. Ampere's Law
 - c. Faraday's Law
 - i. Calculation of induced voltage/current/field
 - ii. Concept of inductance
- 5. Interpret EM waves as solutions to Maxwell's equations

Lab Content

Not applicable.

Special Facilities and/or Equipment

When taught via Foothill Global Access, on-going access to computer with email software and hardware; email address.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

Weekly assignments Midterms Final examination

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

Lecture Demonstration

Representative Text(s) and Other Materials

Instructor-generated materials. Text at the level of Halliday and Resnick optional.

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

- 1. Homework problems covering subject matter from text and related material ranging from 3-10 problems per week. Students will need to employ critical thinking in order to complete assignments.
- 2. One hour per week of lecture covering subject matter from text and related material. Reading and study of the textbook, related materials and notes.

Discipline(s)

Physics/Astronomy