MATH 40A: QUANTITATIVE REASONING

Foothill College Course Outline of Record

Heading	Value
Effective Term:	Summer 2023
Units:	5
Hours:	5 lecture per week (60 total per quarter)
Prerequisite:	Intermediate Algebra or equivalent.
Corequisite:	For students who do not meet the prerequisite requirement, concurrent enrollment in MATH 240A is required.
Advisory:	Demonstrated proficiency in English by placement via multiple measures OR through an equivalent placement process OR completion of ESLL 125 \& ESLL 249; not open to students with credit in MATH 80.
Degree \& Credit Status:	Degree-Applicable Credit Course
Foothill GE:	Area V: Communication \& Analytical Thinking
Transferable:	CSU/UC
Grade Type:	Letter Grade (Request for Pass/No Pass)
Repeatability:	Not Repeatable
Formerly:	MATH 80

Description

This course is designed for any student, in any major, who is interested in exploring the connections between math concepts and the quantitative skills we use in everyday life. The course focuses on problem solving using mathematical methods and modeling and quantitative investigation strategies. Applications include linear and exponential models, multivariable relationships, conversions, estimation, elementary probability, and descriptive statistics. Students will learn individually and collaboratively to analyze quantitative information and apply quantitative skills in a variety of real life contexts and express their findings verbally and in writing.

Course Objectives

The student will be able to:
a. Create, apply, and interpret linear and exponential models to solve problems in contextualized, culturally relevant settings.
b. Calculate, compare, and interpret measures of center to make decisions.
c. Apply quantitative reasoning strategies to culturally relevant applications drawn from business, economics, medicine, engineering, education, psychology, sociology, social sciences, life science, and health science.
d. Use estimation and investigation of multiple representations of numbers and functions to assess claims from a variety of fields, such as environmental, health and wellness.
e. Analyze personal finance options.
f. Use graphs to describe, interpret, synthesize, and predict.
g. Analyze multivariable relationships and investigate what variables contribute to the formula.
h. Practice mathematical habits of mind.
i. Select appropriate mathematical tools to solve problems and make decisions.
j. Discuss mathematical problems and write solutions in accurate mathematical language and notation.

Course Content

a. Create, apply, and interpret linear and exponential models to solve problems in contextualized, culturally relevant settings
i. Connections between four representations of a function

1. Equation
2. Graph
3. Table
4. Contextual situations
ii. Units
iii. Intercepts
iv. Limitations of models based on data
5. Interpolation
6. Extrapolation
v. Linear models
7. Rate of change as slope
8. Interpretations of slopes and intercepts
vi. Exponential models
9. Percentage change
10. Interpretation of percent change in context
11. Growth and decay
b. Calculate, compare, and interpret measures of center to make decisions
i. Median
ii. Mean
iii. Mode
iv. Formulas in a spreadsheet
c. Apply quantitative reasoning strategies to culturally relevant applications drawn from business, economics, medicine, engineering, education, psychology, sociology, social sciences, life science, and health science
i. Culturally relevant issues, such as: 1. Population
a. Population growth
b. Population density
12. Allocation of resources
a. Natural
b. Human
c. Per capita measures
ii. Proportional reasoning
iii. Doubling times
iv. Absolute change vs. relative change
d. Use estimation and investigation of multiple representations of numbers and functions to assess claims from a variety of fields, such as environmental, health and wellness
i. Large numbers
ii. Mental math
13. Predictions
14. Assessment of media claims
iii. Scientific notation
iv. Tables, graphs, formulas, contexts
e. Analyze personal finance options, such as:
i. Credit cards
ii. Tax forms
iii. Savings plans
15. Simple interest
16. Compound interest
iv. Consumer Price Index
17. Base year
18. Comparisons over time
19. Purchasing power
20. Interpretations
21. Calculations
v. Cost of Living Index
22. Buying power
23. Comparisons across location
f. Use graphs to describe, interpret, synthesize, and predict
i. Pie chart
ii. Line graph
iii. Bar chart
iv. Pictographs
v. Scatterplots
vi. Misleading graphs
g. Analyze multivariable relationships and investigate what variables contribute to the formula
i. Units and dimensional analysis
ii. Role of each variable
iii. Relationship between two variables in a multi-variable formula
iv. Solving for an unknown variable or quantity
v. Inequalities
vi. Decision making using formulas
h. Practice mathematical habits of mind
i. Consumer and media skepticism
ii. Justify and interpret solutions
24. Correctness
25. Applicability
26. Significance
iii. Predicting solutions
iv. Analyzing different ideas
v. Revising thinking and solutions
i. Select appropriate mathematical tools to solve problems and make decisions
i. Estimation
ii. Diagrams and graphs
iii. Measures of central tendency
iv. Probability
v. Mathematical models and formulas
vi. Dimensional analysis
vii. Technology tools
27. Calculator/computer utilities for creating graphical displays
28. Spreadsheet utilities for generating and exploring data
29. Calculator/computer utilities for finding and verifying solutions
j. Discuss mathematical problems and write solutions in accurate mathematical language and notation
i. Application problems from other disciplines
ii. Proper notation

Lab Content

Not applicable.

Special Facilities and/or Equipment

1. Scientific calculator.
2. Computer with internet access.
3. When taught via Foothill Global Access, on-going access to computer with email software and hardware; email address.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

Ongoing, formative classroom assessments

Participation in group and class discussions
Checkpoint quizzes
Mathematical exercises
Essays
Written analysis
Module tests
Final exam
Projects
Presentations
Portfolio development

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

Students will be engaged in small group discussion of contextualized culturally relevant problems followed by wrap-up discussions of group findings and important mathematical ideas related to contextualized problems
Students will reflect on their thinking and on problem ideas individually and in groups
Students will address mathematical sticking points through discussion and short, targeted, small group or whole class discussions Short directed lecture

Representative Text(s) and Other Materials

WestEd, Carnegie Math Pathways. Quantway College. 2021.

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

a. Deliberate practice: daily homework designed to extend concept and skill development
b. Preparatory homework designed to prepare students for the next lesson
c. Reading about application
d. Mini quizzes
e. Portfolio development
f. Review and preparation for quizzes and exams
g. 1-2 page analysis papers

Discipline(s)

Mathematics

