GIST 12: INTRODUCTION TO GEOSPATIAL TECHNOLOGY

Foothill College Course Outline of Record

<table>
<thead>
<tr>
<th>Heading</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Term:</td>
<td>Summer 2022</td>
</tr>
<tr>
<td>Units:</td>
<td>4</td>
</tr>
<tr>
<td>Hours:</td>
<td>3 lecture, 3 laboratory per week (72 total per quarter)</td>
</tr>
<tr>
<td>Advisory:</td>
<td>This is an introductory level course in the applications of GIST, and assumes no prior knowledge of the discipline; concurrent or prior enrollment in GEOG 11 or GIST 11 recommended; not open to students with credit in GEOG 12.</td>
</tr>
<tr>
<td>Degree & Credit Status:</td>
<td>Degree-Applicable Credit Course</td>
</tr>
<tr>
<td>Foothill GE:</td>
<td>Non-GE</td>
</tr>
<tr>
<td>Transferable:</td>
<td>CSU/UC</td>
</tr>
<tr>
<td>Grade Type:</td>
<td>Letter Grade (Request for Pass/No Pass)</td>
</tr>
<tr>
<td>Repeatability:</td>
<td>Not Repeatable</td>
</tr>
<tr>
<td>Cross-Listed:</td>
<td>GEOG 12</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

• Define a Geographic Information System.
• Identify, compare and contrast vector and raster GIS.
• Apply cartographic principles of scale, resolution, projection, data management and spatial analysis to a geographic nature using a GIS.

Description

Study of geospatial technology, including Geographic Information Systems (GIS), Global Positioning Systems (GPS), cartography, remote sensing, and spatial analysis. Application of Geographic Information Systems (GIS) science to spatial data management. Assessment of vector and raster systems, scale, resolution, map projection, coordinate systems and georeferencing. Identification and acquisition of spatial data.

Course Objectives

The student will be able to:

a. Define Geographic Information Systems (GIS) and describe the fundamental concepts of Geographic Information Systems and Technology
b. Identify, compare and contrast vector and raster GIS
c. List and evaluate the capabilities of various GIS programs
d. Discuss the importance of metadata
e. Demonstrate how to access different sources of data
f. Demonstrate the process of creating data
g. Discuss the fundamental concepts of data quality
h. Apply cartographic principles of scale, resolution, projection and data management to a problem of a geographic nature
i. Apply spatial analysis functions on a GIS to investigate a geospatial problem

Course Content

a. Fundamental concepts of Geographic Information Science & Technology
 i. The GIST industry
 ii. Definition of GIS
 iii. Geospatial information systems (GIS, GNSS, RS) and their components
 iv. Professional applications of GIST
 v. GIS software: proprietary and open source
 vi. GIS hardware
 vii. GNSS hardware
 viii. RS hardware
b. Understanding geospatial data
 i. Types of data
 ii. Vector and raster systems
 iii. Scale, resolution, map projection
 iv. Coordinate systems
 v. Using metadata to correctly apply spatial reference information
c. Displaying geospatial data
 i. Basics of cartographic design
 1. Map composition
 2. Color selection
 3. Thematic map display
 ii. Designing for different output products (web, hardcopy)
d. Acquiring and working with geospatial data
 i. Identify sources of GIS data, including analog and digital sources
 ii. The importance of metadata
 iii. Using metadata to interpret attribute data
 iv. Geocoding
e. Global Navigation Satellite Systems
 i. How GNSS systems work
 ii. How GNSS data is acquired
 iii. How GNSS data is integrated into a geospatial project
 iv. Georeferencing
f. Remote sensing and image classification
 i. How remotely sensed imagery is acquired
 ii. Uses of remotely sensed imagery in GIS
 iii. Interpret false color aerial photography
 iv. Heads up digitizing techniques
g. Geospatial analysis
 i. Vector to raster, raster to vector conversions and error propagation
 ii. Query, edit and maintain a geospatial database
 iii. Spatial analysis techniques, including map algebra, overlays, buffering, interpolation and surface analysis, network analysis and modeling
h. Designing and implementing a GIS
 i. User needs assessment
 ii. Database design and management
 iii. Acquiring digital and analog data
 iv. Query, edit and maintain a geospatial database
v. Application of geospatial analysis techniques to solve problems and produce cartographic output

Lab Content
Hands-on exercises relating to:

a. Fundamental concepts in Geographic Information Science
 i. Vector and raster systems
 ii. Scale, resolution, map projection
 iii. Coordinate systems
b. Geospatial data
 i. Georeferencing
 ii. Using GPS
 iii. Geocoding
 iv. Heads-up digitizing
 v. Analog and digital data sources, including aerial photography
 vi. Using and creating metadata
c. Spatial analysis
 i. Quantitative and statistical methods; map algebra
 ii. Formulating geographic questions
 iii. GIS as a modeling tool
d. Plan, evaluate and execute a GIS project
 i. Identify a problem and conduct a user needs assessment
 ii. Outline a strategy to solve the problem
 iii. Locate relevant data sources
 iv. Identify hardware and software needed
 v. Design and evaluate a plan to acquire the data
 vi. Incorporate data into a GIS
 vii. Apply principles of spatial analysis
 viii. Present results

Special Facilities and/or Equipment
1. PC computer facilities and ESRI’s ArcGIS software (or comparable vector and raster GIS software). Computer laboratory will also need internet access.
2. When taught via Foothill Global Access, ongoing access to computer with email software and hardware; email address.

Method(s) of Evaluation
Methods of Evaluation may include but are not limited to the following:

Examinations
Laboratory projects
Oral presentation

Method(s) of Instruction
Methods of Instruction may include but are not limited to the following:

Lecture presentations
Classroom discussion
Demonstrations and hands-on exercises
Reading assignments

Representative Text(s) and Other Materials

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

a. Weekly reading assignments from text and outside sources ranging from 30-60 pages per week.
b. Weekly lecture covering subject matter from text assignment with extended topic information. Class discussion is encouraged.

Discipline(s)
Geography or Drafting/CADD or Environmental Technologies or Forestry/Natural Resources