DMS 52B: PHYSICAL PRINCIPLES OF DIAGNOSTIC MEDICAL SONOGRAPHY II

Foothill College Course Outline of Record

Heading	Value
Units:	2
Hours:	2 lecture per week (24 total per quarter)
Prerequisite:	DMS 52A.
Degree & Credit Status:	Degree-Applicable Credit Course
Foothill GE:	Non-GE
Transferable:	CSU
Grade Type:	Letter Grade Only
Repeatability:	Not Repeatable

Student Learning Outcomes

- Identify the various types of transducers and describe the differences.
- · Identify the components of the image display.

Description

A continuation of DMS 52A with an emphasis on transducer types, 2-D imaging, pulse echo instrumentation, image processing, dynamic range as well as harmonic imaging. Intended for students in the Diagnostic Medical Sonography Program; enrollment is limited to students accepted in the program.

Course Objectives

The student will be able to:

- A. Identify the various types of transducers and describe the differences.
- B. Explain the principles of pulsed waves.
- C. Identify the differences between two-dimensional imaging and other types of imaging.
- D. Identify the components of the image display.
- E. Explain the fundamentals of harmonic imaging.
- F. Explain the basics of hemodynamics as interrogated by doppler ultrasound.

Course Content

- A. Transducers.
- 1. Transducer construction
- 2. Transducer properties
- 3. Transducer types
- B. Principles of pulsed sound waves.
- 1. Sound beam anatomy
- 2. Lateral resolution
- C. Two-dimensional imaging.
- 1. 2-D imaging and other types of imaging.
- 2. Various transducer types to create the 2-D image.
- D. Pulsed echo instrumentation and components of image display.
- 1. Receiver functions
- 2. Electrical interaction
- 3. Reconstruction of the image

- 4. Sender/receiver interfaces
- 5. Care and cleaning of transducers
- 6. Storage of transducers
- E. Real time imaging.
- 1. Dynamic range
- 2. Harmonic imaging
- 3. Matrix of real time imaging
- 4. Contrast materials
- 5. Hemodynamics of doppler ultrasound
- 6. Doppler and doppler ultrasound
- 7. Ultrasound artifacts

Lab Content

Not applicable.

Special Facilities and/or Equipment

A. DVD/TV video system, internet access, computer, slide system, overhead projector, video conferencing.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

A. Quizzes

B. Final exam

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

- A. Lecture presentations
- B. Classroom discussions
- C. Homework

Representative Text(s) and Other Materials

Edelman, Sidney. <u>Understanding Ultrasound Physics.</u> 5th ed. Woodlands, TX: ESP, Inc., 2018.

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

A. Read text assignments as per syllabus - estimated as 20 pages per week

B. Complete written sections on tests.

Discipline(s)

Diagnostic Medical Technology