C S 30B: LINUX SHELL
PROGRAMMING

Foothill College Course Outline of Record

Value
Effective Term: Summer 2021
Units: 4.5

Heading

Hours: 4 lecture, 2 laboratory per week (72
total per quarter)

Advisory: C S 30A or equivalent.

Degree & Credit Status: Degree-Applicable Credit Course

Foothill GE: Non-GE

Transferable: Csu/ucC

Grade Type: Letter Grade (Request for Pass/No
Pass)

Repeatability: Not Repeatable

Student Learning Outcomes

+ A successful student will be able to code basic commands in the
BASH programming environment using a structured approach that
shows mastery of the write/test/debug cycle. In particular, the
student will be able to use arrays, iterative and conditional structures,
sorts, regular expressions and nesting in shell scripts.

A successful student will be able to make us of redirection, pipes,
advanced regular expressions, awk, jobs, signals and other advanced
scripting techniques.

Description

Linux shell script programming using the Bourne Again shell
programming language (bash) and Linux utilities to create practical shell
scripts. Topics covered include customizing the environment, running
and writing scripts, variables, loops, functions, text processing and
debugging.

Course Objectives

The student will be able to:

A. Describe the history, purpose and components of a Linux shell.

B. Create a user account, logon and get information using commands on
a Linux system.

C. Understand and customize the bash shell environment by creating
aliases and altering environment files.

D. Use a Linux text editor to create a shell script and run scripts
effectively from the command line.

E. Write code to redirect input and output to and from the user, files and
commands using redirection and pipes.

F. Incorporate essential Linux utilities such as eval, exec, exit and sleep in
a program.

G. Describe the different types of variables in the bash environment and
explain the properties and uses of each.

H. Define, analyze and code the basic conditional and iterative control
structures and explain how they can be nested.

I. Design, implement, test, and debug functions that can be used in
scripts, and demonstrate the way parameters are passed in such
functions.

J. Declare and initialize an array, then access and sort the array
elements.

C S 30B: LINUX SHELL PROGRAMMING 1

K. Use regular expressions and bash commands to write code to process
text including finding, sorting, comparing and merging.

L. Use advanced regular expressions as well as the sed and awk utilities
to perform more advanced text manipulation.

M. Describe methods for handling and using processes, jobs, signals,
coroutines, and subshells.

N. Implement code to appropriately handle errors and provide meaningful
feedback via exit status and error messages.

0. Use a variety of techniques such as debug functions, debug
statements and built-in debugging options to find and fix code errors.

Course Content

A. Shell basics

1. Purpose of a shell

. History of Linux shells

. Components of Linux

. The kernel and subsystems

. Getting started with Linux

. How to login and logout

. User accounts

. The superuser

Account settings and configuration
. Commands for getting information
. Stopping a program

. Customizing the environment
. .bash_profile file

. .bash_logout file

. .bashrc file

. Aliases

. Shell prompt

. Writing and running scripts

. Text editors

. Understanding man pages

. Command line syntax

. Arguments and options

. Command line history

. Command line completion
Command line editing

. Input/Output

. Standard input

Standard output and standard error
. Redirection

Pipes

. Essential utilities/commands
echo and print

exit

exec

eval

sleep

. Variables

. Bash reserved variables

. Typed variables

. Integer variables and arithmetic
. String variables and quoting

. Variable scope

. Exporting variables

. Program control

. Logical operators

. Test command

.if/else

4. for

WN =2 TOORWN—"QUIARAON—=TRONTTMNOTRON—=ODOANON=0OO0TNWON—=TAN®N



2 C S 30B: LINUX SHELL PROGRAMMING

5. case

6. select

7. while/until

I. Functions and argument passing
1. Writing functions

2. Calling functions

3. Positional parameters

4. Processing options

J. Arrays

1. Properties

2. Operations

3. Sorting

K. Text processing commands
. Selecting using grep

. Basic regular expressions

. Sorting input

. Finding files

Merging lines

. Comparing files

. Eliminating duplicate lines

. Advanced text manipulation
awk

sed

. Advanced regular expressions
. Process handling

. Process IDs and job numbers
. Job control

Signals

. Coroutines

. Subshells

. Process substitution

. Exit and signal handling

. Signal trapping

. Exit status

. Error messages

. Debugging techniques

. Syntax vs. logic errors

Echo commands

. Set built in debugging options
. Debug statements

. Debug functions

Lab Content

A. Getting started with Linux

1. Create a new user account with user id and password

2. Enter commands such as whois, which and whereis to get basic
information

3. Run and stop programs from the command line

4. Customize the environment by altering key system files

B. Writing and running scripts

1. Demonstrate the complete edit-debug-run cycle of a script using a text
editor and the command-line environment

2. Use command line arguments and options to run the script

3. Distinguish between syntax errors and logic errors and develop
strategies for dealing with each type of error

4. Debug code with the help of error messages and functions to produce
a working program

C. Exploring the different variable types through system and user-written
files

1. Gain experience in effectively using the text editor to create code with
numeric types

ORWN_"OWN—="Z0U0MNMWN-SZWON-=TTNOOUTNWN =

2. Gain experience in effectively using the text editor to create code with
string types

3. Use the text editor to assist in assigning new values to bash
environment and reserved variables

4. Solve syntax and logic problems that arise from typical incorrect use
of variables whether pre-defined or user-defined

D. Demonstrating interaction with the user, files and commands

1. Use pipes and redirection to interact with files or other commands

2. Play the role of user and programmer, alternately, to establish a user-
interaction plan for a program

3. Evaluate and comment on other students' user-interaction plan

4. Change modes from source code design (editing mode) to end-user
interaction (run mode) in your IDE in order to perform Q/A on the program

5. Fix poor interaction behavior by adjusting code and rerunning program
until a satisfactory result is achieved

E. Building a script that demonstrates "intelligence” though a
combination of control statements

1. Become familiar with selection, loop and nesting to imbue code with
correct logic behavior

2. Use structured programming to make control structures maintainable
3. Run the program multiple times to verify that its control statements
produce the correct behavior or output under any scenario

4. Fix incorrect logic behavior by adjusting control structures and
rerunning program until a satisfactory result is achieved

F. Incorporating functions and utilities in programming projects

1. Gain experience in writing a function

2. Use a previously written function/utility in a client program

3. Refine functions by adding or changing their definitions and observe
the result

4. Use positional parameters and processing options to change the
outcome of running a function

5. Deduce the impact of a function's or utility's design on the programs
that invoke it

G. Processing and manipulating text

1. Use commands, regular expressions, and utilities such as sed and awk
to process and manipulate text

2. Use the man pages to understand the purpose and use of various text
processing commands

3. Use debugging techniques to successfully integrate awk and sed
functions into user written code

H. Handling processes

1. Use a text editor to write code involving both system and user
processes

2. Incorporate commands to control jobs, handle signals, run coroutines
and start child processes

3. Show results by using commands to print information on processes
4. Use debugging techniques to solve problems that arise during the
testing of the program

Special Facilities and/or Equipment

A. Access to a computer laboratory with the Linux operating system.

B. A website or course management system with an assignment posting
component (through which all lab assignments are to be submitted) and
a forum component (where students can discuss course material and
receive help from the instructor). This applies to all sections, including on-
campus (i.e., face-to-face) offerings.

C. When taught via Foothill Global Access on the Internet, the college will
provide a fully functional and maintained course management system
through which the instructor and students can interact.



D. When taught via Foothill Global Access on the Internet, students must
have currently existing email accounts and ongoing access to computers
with internet capabilities.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

Tests and quizzes

Written laboratory assignments which include source code, sample runs
and documentation

Final examination

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

Lectures which include motivation for syntax and use of shell
programming language and shell scripting concepts, example programs,
and analysis of these programs

Online labs (for all sections, including those meeting face-to-face/on-
campus), consisting of:

1. An assignment webpage located on a college-hosted course

management system or other department-approved internet environment.

Here, the students will review the specification of each lab assignment
and submit their completed lab work
2. A discussion webpage located on a college-hosted course

management system or other department-approved internet environment.

Here, students can request assistance from the instructor and interact
publicly with other class members

Detailed review of written assignments which includes model solutions
and specific comments on the student submissions

In person or online discussion which engages students and instructor in
an ongoing dialog pertaining to all aspects of designing, implementing
and analyzing shell scripts

When course is taught fully online:

1. Instructor-authored lecture materials, handouts, syllabus,
assignments, tests, and other relevant course material will be delivered
through a college-hosted course management system or other
department-approved internet environment

2. Additional instructional guidelines for this course are listed in the
attached addendum of CS department online practices

Representative Text(s) and Other
Materials

Blum, Richard, and Christine Bresnahan. Linux Command Line and Shell
Scripting Bible, 3rd ed.. 2015.

Tammer, Sebastiaan. Learn Linux Shell Scripting — Fundamentals of Bash

4.4,3rd ed.. 2018.

Types and/or Examples of Required
Reading, Writing, and Outside of Class
Assignments

A. Reading

1. Textbook assigned reading averaging 30 pages per week.

2. Reading the supplied handouts and modules averaging 10 pages per
week.

C S 30B: LINUX SHELL PROGRAMMING

3. Reading online resources as directed by instructor though links
pertinent to bash shell scripting.

4. Reading library and reference material directed by instructor through
course handouts.

B. Writing

1. Writing technical prose documentation that supports and describes
the programs that are submitted for grades.

Discipline(s)

Computer Science

3



