
C S 2B: INTERMEDIATE SOFTWARE DESIGN IN C++ 1

C S 2B: INTERMEDIATE
SOFTWARE DESIGN IN C++
Foothill College Course Outline of Record
Heading Value
Effective Term: Summer 2025
Units: 4.5
Hours: 4 lecture, 2 laboratory per week (72

total per quarter)
Prerequisite: C S 2A.
Advisory: Demonstrated proficiency in

English by placement via multiple
measures OR through an equivalent
placement process OR completion
of ESLL 125 & ESLL 249.

Degree & Credit Status: Degree-Applicable Credit Course
Foothill GE: Area 1B: Oral Communication &

Critical Thinking
Transferable: CSU/UC
Grade Type: Letter Grade (Request for Pass/No

Pass)
Repeatability: Not Repeatable

Student Learning Outcomes
• A successful student will be able to use the C++ environment to

define the basic abstract data types (stacks, queues, lists) and
iterators of those types to effectively manipulate the data in his or her
program.

• A successful student will be able to write and debug C++ programs
which make use of inheritance, i.e., the "is a" relationship, common
to all OOP languages. Specifically, the student will define base
and derived classes and use common techniques such as method
chaining in his or her programs.

• A successful student will be able to define and use C++ templates to
make their data and algorithms work with a variety of data types.

Description
Systematic treatment of intermediate concepts in computer science
through the study of C++ object-oriented programming (OOP). Coding
topics include C++ derived classes, class templates, function templates,
virtual functions, operator overloading, an introduction to the Standard
Template Library, multiple inheritance, pointers, dynamic memory
allocation and file I/O. Concept topics include OOP project design,
inheritance, polymorphism, method chaining, functional programming,
linked-lists, FIFOs, LIFOs, events in GUIs and guarded code.

Course Objectives
The student will be able to: 
A. Configure an Integrated Development Environment (IDE) appropriate
for advanced C++ programming. 
B. Use both instance members and static members, as appropriate, in
class design. 
C. Analyze and demonstrate the use of dynamic and static C++ multi-
dimensional arrays. 

D. Design, implement, and test C++ programs that use class inheritance,
and explain why this is an example of the "is-a" relationship. 
E. Demonstrate the use of function chaining between derived class
and base class methods, and give examples of the C++ syntax used for
chained constructors. 
F. Apply unary and binary operator overloading to different situations and
explain how it simplifies syntax. 
G. Describe declaration models for run-time storage allocation, garbage
collection, deep memory copies and type checking. 
H. Explain how guarded code is implemented in C++ through exceptions. 
I. Express numbers in decimal, binary and hexadecimal representations
and use bitwise logical operators to process data at the bit and byte level.

J. Demonstrate a working knowledge of basic abstract data types (ADTs)
and produce examples of each. 
K. Explain what abstract classes and pure virtual functions are and how
they are used. 
L. Name the "Big Three" class methods in C++ and discuss the role of
each. 
M. Write code that makes effective use of the Standard Template Library.

N. Define various types of C++ template classes and show how each is
specialized to a class by the client program. 
O. Explain the use of multiple inheritance. 
P. Demonstrate how files are written-to and read-from in C++. 
Q. Design, implement, test, and debug intermediate-level C++ programs
that use each of the following fundamental programming constructs:
string processing, numeric computation, simple I/O, arrays and the C++
API. 
R. Write applications that solve problems in one or more application
area: mathematics, physics, chemistry, cellular automata, 3-D simulation,
astronomy, biology, business, internet.

Course Content
A. Setting up a complete C++ environment 
1. The Standard Template Library (C++ collections) 
2. Eclipse 
3. Configuring the IDE for advanced C++ programming 
B. The proper use of class members and methods 
1. When to use instance members and methods 
2. When to use static members and methods 
3. Implicit and explicit use of the "this" pointer 
4. The context-sensitive meanings of "const" 
C. Multi-dimensional arrays 
1. Dynamic allocation pointer-based arrays 
2. 2-D arrays 
3. Arrays of pointers 
D. Inheritance 
1. The "is a" relationship 
2. Base classes 
3. Derived classes (subclasses) and class hierarchy 
4. Virtual functions 
5. Derived class constructors and destructors 
6. Member method overriding vs. simple overloading 
7. Private, protected and public members 
8. Encapsulation and polymorphism 
E. Function chaining 
1. Chaining in constructors using initializers 
2. Member method chaining 
F. Operator overloading 
1. Unary operators 



2  C S 2B: INTERMEDIATE SOFTWARE DESIGN IN C++

2. Binary operators 
3. Member vs. global-scope operators 
G. Storage allocation methods and deep vs. shallow memory copies 
1. Run time binding and storage management of activation records 
2. Declaration consequences of pointers, references and value
parameters 
3. Strong type-checking and run-time vs. compile time error detection 
4. Effect of declaration strategy on binding, visibility and lifetime of
variables 
5. Effect of declaration strategy on scope and persistence of variables 
6. Instantiation of member objects in constructors 
7. Copy constructors and deep copies of objects 
H. Exception handling and event-driven programming 
1. Built-in C++ exception classes 
2. User-defined exceptions 
3. When to re-throw and when to handle an exception 
4. Alternatives to exceptions 
5. GUI API (instructor's choice) and event-handling techniques 
I. Non-decimal arithmetic 
1. Bitwise numeric operators 
2. Bitwise logical operators 
3. Binary and hexadecimal constants 
J. Topics in Abstract Data Types (ADTs) 
1. The vector ADT and C++'s Vector 
2. The linked-list ADT and C++'s List 
3. The Stack and Queue ADT 
4. Implementing ADTs through inheritance 
5. Using existing ADTs from STL 
K. Abstract classes 
1. Defining and using abstract classes 
2. Pure virtual functions 
L. Deep copies and the "Big Three" 
1. The copy constructor 
2. The assignment operator 
3. The destructor and cleaning up 
M. C++ Standard Template Library 
1. C++ Vectors 
2. C++ Lists and Iterators 
N. C++ Templates 
1. Class templates 
2. Function templates 
3. Type parameters 
O. Multiple inheritance 
1. Common grandparent classes 
2. Distinct grandparent classes 
3. Other combinations 
P. Topics in C++ file I/O 
1. Streams 
2. Input streams 
3. Output streams 
Q. Essential examples and assignment areas 
1. String/text processing 
2. Numeric computation 
3. User interaction 
4. Multi-class projects and compound data types 
5. Inheritance-based projects 
6. Representative GUI project with event-driven design 
R. Applications used throughout course in selected areas 
1. Math 
2. Physics 
3. Chemistry 
4. Biology 

5. Astronomy 
6. Business and finance 
7. Internet

Lab Content
A. Familiarization with the intermediate-level online lab environment 
1. Modify and customize project-specific and global settings of an
Integrated Development Environment (IDE) 
2. Use the IDE to create multi-file programming projects 
3. Organize projects within an IDE so as to support easy project-
switching and orderly submission of labs 
4. Gain experience with the steps needed to edit a complex program 
5. Modify IDE settings to produce an industry standard code style 
B. Organizing and debugging multi-class projects 
1. Demonstrate the ability to debug programs that contain multiple
classes 
2. Distinguish between interface and implementation in projects by
creating classes that are independent of I/O modality 
3. Write individual component classes that are independent of client use
and can serve several client programs 
4. Incorporate symbolic constants, statics and instance members into
classes in a way that demonstrates a mature understanding of object-
oriented programming (OOP) in a lab project 
5. Debug a multi-class project to produce a working program 
C. Exploring advanced array constructs in class design 
1. Gain experience in effectively using single and multi-dimensional
arrays as class members 
2. Apply nested loops to process multi-dimensional arrays 
3. Use the IDE to debug errors in multi-dimensional arrays 
4. Solve problems using fixed-size and dynamic sized arrays, as
appropriate 
D. Demonstrating competence in intermediate level algorithm design
using classes within the IDE 
1. Use the IDE to implement a multi-faceted algorithm and/or simulation
that makes effective use of OOP 
2. Evaluate and comment on other students' algorithms 
3. Utilize a combination of string processing and numeric processing to
address various aspects of the algorithm implementation 
4. Produce clear program runs which demonstrate that the algorithm
addresses a variety of cases and/or input states 
5. Incorporate bitwise and logical operations to address binary logic
tasks within an algorithm 
E. Building a program that uses class inheritance to demonstrate how re-
use is handled in OOP 
1. Create a project that contains at least one class intended to be used
as a base class 
2. Derive (sub-class) one or more classes from the base class 
3. Use function chaining to avoid code duplication between base classes
and derived classes 
4. Differentiate between, and document in your lab, the distinct use of
method overloading and method overriding 
F. Incorporating basic abstract data types in programming projects 
1. Implement a fundamental abstract data type (ADT) such as a queue or
stack in a programming lab 
2. Use a previously written ADT from the programming language's
application programmer interface (API) 
3. Incorporate inheritance in a project that uses ADTs 
4. Provide a client program that tests and demonstrates the correct
behavior of the ADT 
G. The proper use of deep and shallow copies in conjunction with
inheritance and other advanced techniques learned in previous labs 



C S 2B: INTERMEDIATE SOFTWARE DESIGN IN C++ 3

1. Create the proper set of methods within a class that enables an object
to be cloned (copied deeply) correctly 
2. Utilize inheritance to reinforce the segregation of data into base- and
derived-level behavior 
3. Utilize at least one other lab concept previously, such as binary logic
or multi-dimensional arrays to further improve integration of intermediate
concepts 
4. Separate I/O and implementation in advanced programs 
H. Building projects that use generics (AKA templates) 
1. Demonstrate the difference in a lab project between deriving from a
base class and specializing a generic 
2. Practice writing a generic as well as using a language-defined generic
(template) in a project 
3. Use generics to exercise some aspect of ADTs such as specializing
a generic ADT to make its behavior specific to an assigned project
specification 
4. Employ debugging techniques to solve problems that arise when
designing with generic (template) classes 
I. Exceptions and file I/O in programming 
1. Write a class that has methods which use exception handling to report
errors to the client 
2. Write a test client that uses try/catch blocks to detect exceptions 
3. Implement an algorithm or simulation that reads from and/or writes to
files rather than the user screen 
4. Demonstrate various ways errors are handled and reported besides
exceptions

Special Facilities and/or Equipment
A. Access to a computer laboratory with C++ compilers. 
B. Website or course management system with an assignment posting
component (through which all lab assignments are to be submitted) and
a forum component (where students can discuss course material and
receive help from the instructor). This applies to all sections, including on-
campus (i.e., face-to-face) offerings. 
C. When taught via Foothill Global Access on the Internet, the college will
provide a fully functional and maintained course management system
through which the instructor and students can interact. 
D. When taught via Foothill Global Access on the Internet, students must
have currently existing email accounts and ongoing access to computers
with internet capabilities.

Method(s) of Evaluation
Methods of Evaluation may include but are not limited to the following:

Tests and quizzes 
Written laboratory assignments which include source code, sample runs
and documentation 
Final examination

Method(s) of Instruction
Methods of Instruction may include but are not limited to the following:

Lectures which include motivation for syntax and use of the C++
language and OOP concepts, example programs, and analysis of these
programs 
Online labs (for all sections, including those meeting face-to-face/on
campus), consisting of: 
1. A programming assignment webpage located on a college-hosted
course management system or other department-approved internet

environment. Here, the students will review the specification of each
programming assignment and submit their completed lab work 
2. A discussion webpage located on a college-hosted course
management system or other department-approved internet environment.
Here, students can request assistance from the instructor and interact
publicly with other class members 
Detailed review of programming assignments which includes model
solutions and specific comments on the student submissions 
In-person or online discussion which engages students and instructor in
an ongoing dialog pertaining to all aspects of designing, implementing
and analyzing programs 
When course is taught fully online: 
1. Instructor-authored lecture materials, handouts, syllabus,
assignments, tests, and other relevant course material will be delivered
through a college-hosted course management system or other
department-approved internet environment 
2. Additional instructional guidelines for this course are listed in the
attached addendum of CS department online practices

Representative Text(s) and Other
Materials
Savitch, Walter. Absolute C++, 10th ed.. 2017.

Weiss, Mark Allen. Data Structures and Algorithm Analysis in C++, 4th ed..
2013.

The Weiss text is a classic text in the field and is used by many
universities in both undergraduate and graduate classes on the subject of
data structures.

Types and/or Examples of Required
Reading, Writing, and Outside of Class
Assignments
A. Reading 
1. Textbook assigned reading averaging 30 pages per week. 
2. Reading the supplied handouts and modules averaging 10 pages per
week. 
3. Reading online resources as directed by instructor though links
pertinent to programming. 
4. Reading library and reference material directed by instructor through
course handouts. 
B. Writing 
1. Writing technical prose documentation that supports and describes
the programs that are submitted for grades. 
2. Writing specifications using prose to connect natural English language
to the formulaic programming languages.

Discipline(s)
Computer Science


