
C S 1A: OBJECT-ORIENTED PROGRAMMING METHODOLOGIES IN JAVA 1

C S 1A: OBJECT-
ORIENTED PROGRAMMING
METHODOLOGIES IN JAVA
Foothill College Course Outline of Record
Heading Value
Effective Term: Summer 2025
Units: 4.5
Hours: 4 lecture, 2 laboratory per week (72

total per quarter)
Advisory: Intermediate Algebra or equivalent;

not open to students with credit in C
S 1AH.

Degree & Credit Status: Degree-Applicable Credit Course
Foothill GE: Area 1B: Oral Communication &

Critical Thinking
Transferable: CSU/UC
Grade Type: Letter Grade (Request for Pass/No

Pass)
Repeatability: Not Repeatable

Student Learning Outcomes
• A successful student will be able to use object-oriented programming

techniques to design and implement a clear, well-structured Java
program. Specifically, the student will use and design classes and
objects in his or her programs.

• A successful student will be able to write and debug Java programs
which make use of the fundamental control structures and method-
building techniques common to all programming languages.
Specifically, the student will use data types, input, output, iterative,
conditional, and functional components of the language in his or her
programs.

Description
Systematic introduction to fundamental concepts of computer science
through the study of the Java programming language. Coding topics
include Java control structures, classes, methods, arrays, graphical
user interfaces and elementary data structures. Concept topics include
algorithms, recursion, data abstraction, problem solving strategies, code
style, documentation, debugging techniques and testing.

Course Objectives
The student will be able to:
A. Describe the basic components of the Java software development
environment.
B. Describe the Java software development life cycle from concept
design through documentation, testing and maintenance.
C. Produce clearly written code in an industry standard style appropriate
for Java.
D. Define both primitive and compound data types and give examples in
Java of each type.
E. Use Java variable expressions in a program to compute numeric and
string results.
F. Incorporate user-interaction input and output in a program through
either console or graphical user interface methods.

G. Define, analyze and code the basic Java conditional and iterative
control structures and explain how they can be nested.
H. Design, implement, test, and debug functions and methods that can
be used in programs, and demonstrate the way parameters are passed in
such functions and methods.
I. Apply the techniques of structured (functional) decomposition to
separate a Java program into computational and interactive modules.
J. Write Java programs using object-oriented design, and contrast the
difference between object-oriented and procedural code.
K. Produce a program that interacts with the user using intermediate GUI
elements such as buttons and text-boxes.
L. Create analytical algorithms that use arrays for solving simple
problems.
M. Explain how errors can be reported to the calling function.
N. Explain what an algorithm is and give examples of how algorithms are
implemented in a Java program.
O. Design, implement, test, and debug a program that uses each of the
following fundamental programming constructs: string processing,
numeric computation, simple I/O, arrays and the Java API.
P. Solve problems that have origins in a variety of disciplines including
math, science, the internet and business.
Q. Explain the difference between syntax and semantics in the context of
Java, and place Java in its historical context among high-level languages.

Course Content
A. The Software Development Environment
1. The Java run-time environment
2. Integrated development environments (IDEs)
3. Compiled vs. interpreted languages
4. Survey of major languages
5. Obtaining and installing a Java IDE
B. The Software Development Life-Cycle
1. Overview of design
2. Overview of development
3. Overview of documentation
4. Overview of testing
5. Overview of maintenance
6. Compiler errors vs. run-time errors
7. Debugging strategies
C. Coding Standards, Conventions and Styles
1. Acceptable indentation options
2. Naming conventions for variables and methods
D. Data Types
1. Primitive vs. compound types
2. Numeric types
a. Range and precision
3. Char types
4. String types
5. Logical types
6. Array types
7. Type compatibility
8. References
9. Java-defined classes as compound types
E. Variable Expressions
1. Numeric operators and expressions
2. String operators and expressions
3. Logical operators and expressions
4. Operator precedence
F. Basic Input-Output Strategies
1. Console I/O
2. Simple GUI I/O

2 C S 1A: OBJECT-ORIENTED PROGRAMMING METHODOLOGIES IN JAVA

3. Formatting values for clean output
G. Control Structures
1. Selective and conditional statements
2. Loop statements
3. Nesting levels in control statements
H. Methods and Functional Programming
1. Parameter passing
2. Functional returns
3. Variable scope
4. Method overloading
5. Recursion
6. Variable binding, lifetime and visibility
I. Structured Programming Elements
1. Separation of computation and I/O
2. Modularity
J. Object-Oriented Programming Using Classes and Methods
1. Encapsulation of member data
2. Encapsulation of member methods
3. Instance vs. static members and methods
4. Data abstraction as realized through correct selection of member data
and methods
5. Data privacy as supported by mutator, accessor and constructor
methods
6. Object composition (the "has a" relationship)
7. Correct interpretation of assignment between object references
8. Introduction to inner classes
9. Procedural languages vs. object-oriented languages
K. Intermediate GUI Elements
1. Frames
2. Text fields
3. Buttons and labels
4. Combo boxes and button groups
5. Event handling
L. Arrays
1. Arrays inside classes
2. Arrays of objects
M. Error Reporting
1. Return values
2. Catching exceptions
3. Avoiding end-use output to report errors in functions or methods
N. Algorithms
1. Role of algorithms in the problem-solving process
2. Simple uses of recursion for divide-and-conquer strategies
3. Simple sorting via a representative sort algorithm
4. Linear searches
O. Essential examples and Assignment Areas
1. String/text processing
2. Numeric computation
3. User interaction
4. Arrays
5. Using a Java-defined API class
6. Creating and using a programmer-defined class
P. Applications used Throughout Course in Selected Areas
1. Math
2. Physics
3. Chemistry
4. Biology
5. Astronomy
6. Business and finance
7. Internet
Q. History and Syntax
1. Java compared with prior languages

2. Current language alternatives to Java
3. Examples of how different languages use differing syntax to
implement a single semantic construct

Lab Content
A. Familiarization with the beginning-level online lab environment
1. Modify and customize the settings of an Integrated Development
Environment (IDE)
2. Use the IDE to create a new programming project
3. Organize projects within an IDE to make submitting labs and switching
project environments an orderly process
4. Gain experience with the steps needed to edit a simple program
5. Modify IDE settings to produce an industry standard code style
B. Finding and fixing errors in simple programs
1. Demonstrate the complete edit-compile-run cycle of a simple program
using IDE or command-line environment
2. Distinguish between compiler/syntax errors and logic errors
3. Develop strategies for dealing with each type of error
4. Debug code to produce a working program
C. Exploring the different data types using the compiler/IDE
1. Gain experience in effectively using the IDE to create code with
primitive numeric types
2. Gain experience in effectively using the IDE to create code with
primitive character types
3. Use the IDE to assist in defining and using compound data types
4. Solve syntax and logic problems that arise from typical incorrect
formulation of data types
D. Demonstrating user interaction (I/O) through the IDE's console or GUI
capabilities
1. Play the role of user and programmer, alternately, to establish a user-
interaction plan for a program
2. Evaluate and comment on other students' user-interaction plan
3. Change modes from source code design (editing mode) to end-user
interaction (run mode) in your IDE in order to perform Q/A on the program

4. Fix poor interaction behavior by adjusting source code and rerunning
program until a satisfactory result is achieved
E. Designing, implementing and testing a program that demonstrates
"intelligence" though a combination of control statements
1. Become familiar with selection, loop and nesting to imbue a program
with correct logic behavior
2. Use structured programming to make control structures maintainable
3. Run the program multiple times to verify that its control statements
produce the correct behavior or output under any scenario
4. Fix incorrect logic behavior by adjusting control structures and
rerunning program until a satisfactory result is achieved
F. Incorporating functions and class methods in programming projects
1. Gain experience in designing, implementing and testing a function/
method that demonstrates how binding, visibility and variable lifetime
work in an OOP language
2. Use a previously written function or method in a client program
3. Refine methods/functions by adding or changing their definitions and
locally bound variables, and observe the result
4. Deduce the impact of a function's or method's design on the programs
that invoke it
G. Building a program around object-oriented techniques
1. Use previously written classes to instantiate objects in program
2. Use the IDE to assist in the creation of a programmer-defined class
3. Demonstrate the correct choice of class members and methods for
each class used

C S 1A: OBJECT-ORIENTED PROGRAMMING METHODOLOGIES IN JAVA 3

4. Use the IDEs outline view to navigate from one class to another within
a program
H. Exploring arrays
1. Understand the proper use of an array
2. Incorporate an array into a program to facilitate the solution of an
assigned problem
3. Investigate use of variable indices and loops to shorten and clarify the
logic in programs
4. Use debugging techniques to solve problems that arise during the
testing of a program
I. Designing, implementing and testing algorithms
1. Write a program that uses a combination of techniques such as
looping, arrays, logic and user I/O, all encapsulated in a coherent
algorithm
2. Test the algorithm by running the program multiple times giving it
different initial values or inputs
3. Implement a sorting or simple searching algorithm using arrays
4. Transcribe an abstract algorithm into a concrete program that is
written and tested using the IDE and submitted online for evaluation

Special Facilities and/or Equipment
A. Access to a computer laboratory with Java compilers.
B. Website or course management system with an assignment posting
component (through which all lab assignments are to be submitted) and
a forum component (where students can discuss course material and
receive help from the instructor). This applies to all sections, including on-
campus (i.e., face-to-face) offerings.
C. When taught via Foothill Global Access on the Internet, the college will
provide a fully functional and maintained course management system
through which the instructor and students can interact.
D. When taught via Foothill Global Access on the Internet, students must
have currently existing email accounts and ongoing access to computers
with internet capabilities.

Method(s) of Evaluation
Methods of Evaluation may include but are not limited to the following:

Tests and quizzes
Written laboratory assignments which include source code, sample runs
and documentation
Final examination

Method(s) of Instruction
Methods of Instruction may include but are not limited to the following:

Lectures which include motivation for syntax and use of the Java
language and OOP concepts, example programs, and analysis of these
programs
Online labs (for all sections, including those meeting face-to-face/on-
campus), consisting of:
1. A programming assignment webpage located on a college-hosted
course management system or other department-approved internet
environment. Here, the students will review the specification of each
programming assignment and submit their completed lab work
2. A discussion webpage located on a college-hosted course
management system or other department-approved internet environment.
Here, students can request assistance from the instructor and interact
publicly with other class members

Detailed review of programming assignments which includes model
solutions and specific comments on the student submissions
In-person or online discussion which engages students and instructor in
an ongoing dialog pertaining to all aspects of designing, implementing
and analyzing programs
When course is taught fully online:
1. Instructor-authored lecture materials, handouts, syllabus,
assignments, tests, and other relevant course material will be delivered
through a college-hosted course management system or other
department-approved internet environment
2. Additional instructional guidelines for this course are listed in the
attached addendum of CS department online practices

Representative Text(s) and Other
Materials
Liang, Y. Daniel. Introduction to Java Programming, 10th ed.. 2014.

Herbert, Schildt. Java: A Beginner's Guide, 8th ed.. 2018.

Types and/or Examples of Required
Reading, Writing, and Outside of Class
Assignments
A. Reading
1. Textbook assigned reading averaging 30 pages per week.
2. Reading the supplied handouts and modules averaging 10 pages per
week.
3. Reading online resources as directed by instructor though links
pertinent to programming.
4. Reading library and reference material directed by instructor through
course handouts.
B. Writing
1. Writing technical prose documentation that supports and describes
the programs that are submitted for grades.

Discipline(s)
Computer Science

