
C S 10: COMPUTER ARCHITECTURE & ORGANIZATION 1

C S 10: COMPUTER
ARCHITECTURE &
ORGANIZATION
Foothill College Course Outline of Record
Heading Value
Effective Term: Summer 2021
Units: 4.5
Hours: 4 lecture, 2 laboratory per week (72

total per quarter)
Prerequisite: One of the following: C S 1A, 2A or

3A.
Advisory: C S 1C or 2C.
Degree & Credit Status: Degree-Applicable Credit Course
Foothill GE: Non-GE
Transferable: CSU/UC
Grade Type: Letter Grade (Request for Pass/No

Pass)
Repeatability: Not Repeatable

Student Learning Outcomes
• The student will demonstrate the ability to analyze the assembly

language instructions generated by a C, C++ or Java program.
• The student will demonstrate knowledge of the architecture of a

microprocessor including the use of registers, the program counter,
and the arithmetic logic unit.

Description
Introduction to the organization, architecture and machine-level
programming of computer systems. Topics include mapping of high-level
language constructs into assembly code, internal data representations,
numerical computation, virtual memory, pipelines, caching, multitasking,
MIPS architecture, MIPA assembly language code, interrupts, input/
output, peripheral storage processing, and comparison of CISC (Intel) and
RISC (MIPS) instruction sets.

Course Objectives
The student will be able to:
A. Describe the architectural components of a computer system.
B. Discuss and demonstrate the use of compilers, linkers, and loaders.
C. Describe computer representation of numbers and how computer
arithmetic is carried out.
D. Describe the representation of nonnumeric data (character codes,
graphical data).
E. Demonstrate the knowledge of MIPS assembly language.
F. Compare and contrast MIPS architecture and assembly language with
IA32.
G. Write and debug assembly programs that use load/store, arithmetic,
logic, branches, call/return and push/pop instructions.
H. Discuss how variable access, arithmetic, function calls, and pointers
are translated from a high level language into assembly.
I. Write programs that interface between a high level language and
assembly.
J. Write programs that contain system calls.

K. Demonstrate and evaluate the use of efficient programming
techniques.

Course Content
A. The architectural components of a computer system (the von
Neumann machine: CPU (registers, ALU), memory, buses)
1. CPU
a. Control-unit
b. Instruction fetch
c. Decode
d. Execution
2. Memory
a. Bits
b. Bytes
c. Words
3. Registers
4. Flag bit hardware
5. Relationship of the hardware components to software
6. Instruction sets and architectures
a. Data manipulation
b. Control
c. I/O
7. Addressing modes
a. Immediate
b. Register
c. Memory
8. Buses
B. Prepare high level language programs for execution
1. Invoking the compiler
a. Choosing the optimization level
b. Examine the assembler language program generated by the compiler
2. Use a linker to generate the executable program
3. Use the loader to execute the program
C. The computer representation of numbers and how computer
arithmetic is carried out
1. Binary
2. Hexadecimal
3. Packed decimal
4. Integer (signed and twos compliment representations)
5. Floating point
6. Conversions between numeric representations
D. The representation of nonnumeric data (character codes, graphical
data)
1. BCD, EBCDIC, ASCII, and Unicode character codes
2. Rendering pixels on displays and printers
E. Representation of arrays and records
F. Instruction sets, assembly and machine language programming
1. Syntax (instruction format)
2. Data transfer instructions
3. Binary integer arithmetic
4. Conditional branching
a. Related hardware instructions
b. Extended mnemonics
c. Unconditional jump
d. Conditional jump
5. Array access
6. String processing instructions
7. Bit-Level instructions
8. Run time stack instructions
9. Packed decimal instruction
10. Extensions 64-bit instructions

2 C S 10: COMPUTER ARCHITECTURE & ORGANIZATION

G. RISC (MIPS) instruction set architectures
1. Motivation for RISC
a. Chip simplification, cost reduction, performance improvements
2. Current thoughts on CISC vs. RISC
H. Write and debug assembly programs that use load/store, arithmetic,
logic, branches, call/return and push/pop instructions
1. Syntax
2. Variables and constants
a. Declarations
b. Redefinition
c. Conversion between types
3. Subroutine call and return
a. Parameter passing
b. Save and restore conventions
c. Local variables
4. Copying instructions
5. Binary integer arithmetic
6. Conditional branching
a. Hardware level
b. Extended mnemonics
c. If and If...Else...
7. Looping
a. While construct
b. For construct
c. Repeat construct
8. Array access
a. Direct addressing
b. Indirect addressing
9. String processing instructions
10. Bit-Level instructions
11. Run time stack instructions
I. Examine and demonstrate how variable access, arithmetic operations,
function calls, and pointers are translated from a high level language to
assembly language
1. Use the compiler to produce assembly language instructions
2. Determine the assembly language instructions generated by specific
high level language instructions
J. System calls
1. Calling from assembly code
K. Evaluate efficiencies in programming
1. Location of variables
2. Exploiting pipelining
3. Exploiting multicore processors

Lab Content
A. Assembler and compiler installation
1. Install a MIPS assembler/simulator and a C compiler
2. Compile a simple C to demonstrate the proper installation of the
compiler
3. Use the assembler to generate the corresponding object code
4. Run the linkage editor and execute the program
B. High level language programming and numeric representations
1. Write a program in a high level language that stores and converts
between a variety of numeric representations
2. Compile the program
3. Examine the output of the compiler and correlate the high level
language instructions with the generated assembler instructions
4. Discuss the various numeric representations and how they
interoperate
C. High level language programming and non-numeric representations

1. Write a program in a high level language the stores and converts
between a variety of non-numeric representations
2. Use BCD, EBCDIC, ASCII and Unicode character codes and convert
among them
3. Compile the program
4. Examine the output of the compiler and correlate the high level
language instructions with the generated assembler instructions
E. Basic assembly language programming
1. Write an assembly language program which demonstrates data
transfer instructions, binary arithmetic, and conditional branching
2. Assemble and execute the program
3. Evaluate the output
F. Advanced assembly language programming
1. Write an assembly language program which demonstrates array
access and manipulation, String processing, bit-level instruction
2. Assemble and execute the program
3. Evaluate the output
G. Interaction between high level and low level languages
1. Write an high-level language program which calls, passes data to, and
receives data from another assembly language program
2. Assemble and execute the program the program
3. Examine the output of the program to ensure that it produces the
desired results
H. Interaction between assembly language programs and system calls
1. Write an assembly language program which calls, passes data to, and
receives data from operating system calls
2. Assemble and execute the program the program
3. Examine the output of the program to ensure that it produces the
desired results
I. Writing efficient high level language programs
1. Compile a sample source program and analyze the resulting assembly
language program
2. Modify the source program in order the resulting assembly language
program execute faster
3. Analyze and explain why the changes made the assembly language
program execute faster

Special Facilities and/or Equipment
A. Computer laboratory with MIPS simulator and C compilers.
B. Website or course management system with an assignment posting
component (through which all lab assignments are to be submitted) and
a forum component (where students can discuss course material and
receive help from the instructor). This applies to all sections, including on-
campus (i.e., face-to-face) offerings.
C. When taught via Foothill Global Access, a fully functional and
maintained course management system through which the instructor and
students can interact.
D. When taught via Foothill Global Access, students must have currently
existing email accounts and ongoing access to computers with internet
capabilities.

Method(s) of Evaluation
Methods of Evaluation may include but are not limited to the following:

Tests and quizzes
Written laboratory assignments which include source code, sample runs
and documentation
Final examination

C S 10: COMPUTER ARCHITECTURE & ORGANIZATION 3

Method(s) of Instruction
Methods of Instruction may include but are not limited to the following:

Lectures which include motivation for the architecture of computer
systems (CPU, RAM, storage), syntax and use of the ISA 32 assembly
language, example programs, and analysis of these programs
Online labs (for all sections, including those meeting face-to-face/on-
campus), consisting of:
1. A programming assignment webpage located on a college-hosted
course management system or other department-approved internet
environment. Here, the students will review the specification of each
programming assignment and submit their completed lab work
2. A discussion webpage located on a college-hosted course
management system or other department-approved internet environment.
Here, students can request assistance from the instructor and interact
publicly with other class members
Detailed review of programming assignments which includes model
solutions and specific comments on the student submissions
In-person or online discussion which engages students and instructor in
an ongoing dialog pertaining to all aspects of designing, implementing
and analyzing programs
When course is taught fully online:
1. Instructor-authored lecture materials, handouts, syllabus,
assignments, tests, and other relevant course material will be delivered
through a college-hosted course management system or other
department-approved internet environment
2. Additional instructional guidelines for this course are listed in the
attached addendum of CS department online practices

Representative Text(s) and Other
Materials
Patterson, David. Computer Organization and Design MIPS Edition: The
Hardware/Software Interface, 6th ed.. 2020.

Null, Linda. Essentials of Computer Organization and Architecture, 5th
ed.. 2018.

Types and/or Examples of Required
Reading, Writing, and Outside of Class
Assignments
A. Reading
1. Textbook assigned reading averaging 30 pages per week.
2. Supplied handouts and modules averaging 10 pages per week.
3. Online resources as directed by instructor though links pertinent to
programming.
4. Library and reference material directed by instructor through course
handouts.
B. Writing
1. Technical prose documentation that supports and describes the
programs that are submitted for grades.

Discipline(s)
Computer Science

